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ESTIMATION OF BOUNDARY CONDITIONS FOR COASTAL MODELS

by
S. K. Liu,! J. J. Leendertse,! and J. Voogt?

ABSTRACT

In this study, frequency response and transfer function techniques
are used together with cross-spectral and fast Fourier transform methods
to determine the proper boundary values for computing the flow field of
a coastal sea. Tide data containing considerable perturbations from
swel! and meteorological disturbances are analyzed.

In computing the frequency response estimates, the effect of noise
in the input is treated by a cancelling technique and by the choice of
a reference station to evaluate the interdependencies among the other
stations at the boundary. The usefulness of the network frequency response
function is threefold: (1) future conditions can be simulated using
observed water levels at any single location, (2) boundary information
for models of different grid size can be obtained by interpolation, and
(3) missing data at a given location can be estimated optimally using
data at neighboring stations and the network response function. The
paper discusses an example of such an application, the determination of
a boundary of a two-dimensional model of Jamaica Bay, New York City,
U.S.A.

b

One of the major difficulties in coastal and estuarine hydrodynamic
computation is obtaining good boundary information. For example, the
computation requires the time histories of water levels at open boundaries
as one of the major input forcing functions from which is derived the
internal flow field. Field measurements at boundaries, as well as within 1
the prototype, are also needed during various phases of model development
and adjustment. However, such field data often contain noise generated by
instruments, meteorological disturbances, or short-period waves. Often,
part of the records of the critical period may even be missing. This
paper deals mainly with problems such as these encountered frequently in
hydrodynamic and water quality modeling. The analyses used are the esti-
mation of network frequency response function, cross-spectral computation,
noise cancellation, and numerical convolution.

INTRODUCTION

IThe Rand Corporation, Santa Monica, California 90406 U.S.A.

2Rijkswaterstaat, Dienst Informatieverwerking, The Hague, The ]
Netheriands.
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ESTIMATION OF NETWORK FREQUENCY RESPONSE FUNCTIONS

The frequency response function H(f), as its name indicates, describes
the amplitude and phase relationship between one fluctuation with a certain
frequency f as input and the resulting fluctuation as output.

In determining network frequency response relationships, the statisti-
cal approach using cross-spectral estimates is used instead of the classic
method employing the deterministic Fourier or Laplace transforms, because
the sampling variability, confidence limits, and the phase of the frequency
response function can only be estimated using cross-spectral procedures.

bt ittt et I e e S il

A description of the computational method used in this paper is
presented by Liu,(l) and by Leendertse and Liu.(2,3) Reference is also
i made to the handbook of Jenkins and Watts(4) and the thesis of Goodman(>)
on this subject. A brief outline of the computational method is given

below.
| With respect to the interdependency (or the lack of it) between two
- random time series, Xt and y., we see that if the random processes are
jointly stationary such that the joint distribution depends only on time
z differences, then the degree of interdependency can be measured by the
/ cross-covariance function. 1In discrete time this is defined as
N 1 n-k e s
et ;! ny(k) 8-k t2=:1 B, = %) Gy = 1)
v (1)
‘ - 1 n~k s £
L By tz:=1 b =¥ 5y -8

for k = 0, 1, 2, ... m, where m is the largest time lag chosen, n the
total number of data points, and X,y the mean values of the series {x},{y}.

A9 The relationship between these two stochastic processes can also be }
- ! expressed by the integral equation
. )
._} .
8 y(t) = u = f h(t) [X(t - 1) - ux] dt + N(t) (2)
.:‘ 0
It Y
f*ﬂg where h(t) is the impulse response function, u_, u_are the mean values
8§ - of the two processes, and N(t) is the uncorrelited’error term.
1 “\% Wiener(6) showed that the optimal estimates of h(t) should satisfy
s the following integral equation:
Sy
&k i’l o ke
. = -
¥ ny(t) L h(1) v, (t = 1) dt 3
¥
“.ﬂ! The solution to Eq. (3) may be obtained by Fourier transformation. Because

p covariance function and spectral density function form a Fourier transform
Y i pair, thus




ny(f) = H(f) - Pxx(f) or H(f) = ny(f)/Pxx(f) (4)

where P, (f) is the cross-spectrum between x(t) and y(t), Px (f) is the
auto-spectrum of x(t), and the complex valued function H(f) ¥s the frequency
response function. The possibility of using a statistical approach usin§
spectral densities to §ive the frequency response was suggested by Lee. (7)
However, it was later O that a quantitative basis for applying the method
with finite sample records corrupted by measurement noise became available.

For computing the cross-spectral density function estimate by a
numerical Fourier transform, the even and odd parts of the cross-covariance
function are determined by

A(K)

Bl () + v, ()] (%)

B (k)

%[ny(k) - ny(k)] (6)

from which the co-spectral density function is estimated:

% . k=m-1 . 2
ny(f) = ZT[A(O) + 2 ég% A(k) cos (2mnfkt) + A(m) cos (2wfmr)] (7)

The quadrature spectral density function is estimated by

4 k=m-1 . ~
Qyy () = 2T[z E;% B(k) sin (2rfkt) + B(m) sin (ankr)] (8)

The spectral density functions of input and output are determined
in a similar manner. If, in Eq. (1), the output series is replaced by
the input series, we obtain the auto-covariance function of the input,

t=n-k
1 -— -
Yxx(k) R AR tgl (xt - X) (xt+k - x) (9)

from which the input spectral density function is determined:

5 k=m-1
Pxx(k) = ZT{YXX(O) + 2 2;& yxx(k) cos (2nfkt) + yxx(m) cos (2nfmr)]
(10)

The output spectral density function is determined similarly.
The time interval t used in the analysis influences the highest
frequency that can be d¢ :rmined by the analysis method. At least two

samples per cycle are required to define a frequency component in a data
set; thus the highest frequency determined is

(11)

f o=
e 27
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This frequency is the so-called Nyquist frequency. If higher frequencies
are present in the data, these are aliased as lower frequencies.

The spectral density functions are determined for particular fre-
quencies f. These frequencies are calculated only at the special discrete
frequencies of harmonic number k, where

f=T°- k=0,3.2, 3.9 (12)

The total number of discrete frequencies determined depends on the maximum
lag mt.

For each spectral function, the discrete value found is a kind of
average value in a certain range or band. The bandwidth for the compu-
tations is

B = et (13)

One would tend to determine the spectral functions with small band-
width -- thus in much detail -- by choosing a large value for m. Unfor-
tunately, this considerably affects the accuracy of the result.

It should be understood that the analysis method gives estimates
of the function only. Since we are dealing with data that is not deter-
ministic, each sample record used for analysis differs from another and
the results obtained from these records will also differ somewhat.

The estimates of spectral density functions described above are
so-called "raw" estimates, which have certain undesirable properties.
If a strong periodic component is present, the analysis may show small
positive and negative values in the frequency bands adjacent to that in
which the periodic component is present. This phenomenon is called
""leakage," and the negative values it produces are particularly bother-
some. To counter it, frequency smoothing is used, by which the estimate
at a particular frequency is computed as a weighted average of the par-
ticular frequency and the adjacent frequency.

For example, the smoothed co-spectral density function can be taken
= = IKE “ (k - l)fc « k£ = (k + l)fC
cC_(f) =cC (—)= +25C (—-———-——)+ «35C (__c_)+ «25C (———)

xy xy\ m xy m Xy xy m
(14)
This frequency smoothing is called "hanning,'" which is equivalent to the
Tukey lag window.(4) Other methods of minimizing the effect of leakage

are available,(l'a) but these are not applied in this investigation.

For the absolute value of the smoothed cross-spectral density we
obtain the following estimate:
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lp._(£)] = (3' )2 +q (f)z)% (15)
xy Xy xy

Subsequently, the estimated amplitude of the frequency response
function is

|H(E)| = ny(f) /B (f) = Axy(f) (16)

and its estimated phase spectrum is

$(6) = tan'l[éxy(f)/éxy(fﬂ an

The frequency response function thus obtained is an optimal estimate (in

a least square sense), assuming that the system is linear. Even if we
assume that we have a linear system whose input {x} may be measured exactly,
the output may still contain measurement errors. In the case analyzed here,
the output may be influenced by wind and system nonlinearities. The
measured output then contains the transformed input signal plus measurement
noise, etc. (in our case noise caused by wind and nonlinearities).

It is now possible to introduce a measure of the linear relation
between the two series, called the coherency function Q. (f). The squared
coherency is estimated to be Y

2]
Q2 (£} = Xy

(18)

~

Pxx(f) Pyy(f)

If the system is completely linear, the squared coherency is unity;
if the two time series are completely uncorrelated, then the coherency
would be zero. If the coherency is less than unity but greater than
zero, then there is noise in the measurements, the system is not linear,
or the output {y} of the system is due to an input {x} as well as other
inputs.

In determining the behavior of a system it is often useful to see
how the noise is distributed over the frequency range. The estimated
spectral density function of the noise is expressed by

~ 2 ~
PxAy(f) w1l - Qxy(f)] Pyy(f) (19)

In a strict sense, when the cross-spectral estimates P, (f) are used
to determine the frequency response function, the measurement noise at
the input will cause the frequency response function to be underestimated,
as can be seen from the equation

H(E) = B (E)/B () = B (D)/[R () + 2. ()] < K(E)  (20)
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in which Py, (f) is the true value of input spectra and P ., (f) is the
spectrum of extraneous noise components in the input. Notice that the |
uncorrelated noise at the output does not cause bias. i

The amount of measurement noise and the error due to it can be
estimated by computing the amplitude function forward and backward between _
two sets of records (i.e., switching x series and y series in the compu- i3
tational sequence). By going from y to x, the noise in y would cause the
transfer from y to x to be underestimated, which is equivalent to the
overestimation of x in the relative amplification factor. However, by
going from x to y, the noise in y no longer influences the value of back-
ward transfer, but the noise in x is now the important factor. In each
direction the transfer function is underestimated. Therefore, the best I
estimate of the transfer function from y to x is

.~,-,,.V‘.

| 4(1/A,, () + A (6)] (21)

The error would be cancelled out if the random measurement noise level
in both records were about the same.

e T

The computed coherency Qiy(f) also contains some bias if the phase
difference between two stations is appreciable. This bias can be reduced
by a process called alignment (see Ref. 4 for details), using the peak
of the cross-covariance as a guide to make the required shift.

= \.N_“_—_— 0

DATA ANALYSIS

Ty
-
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One of the applications of the network frequency response analysis "
is estimating open boundary conditions for a two~dimensional mathemati-
cal model of the Netherlands coast in the North Sea (Fig. 1). 1In order
to determine the proper boundary conditions for the model, 29 bottom
pressure recorders were installed by the Netherlands Rijkswaterstaat
during the months of May and June 1971. Hourly water level data were
first analyzed without astronomical prejudices, thus allowing for all :
possible frequencies and their higher harmonics that were present. F

B 2 s
v
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The frequency domain mapping was carried out using arbitrary-radix
algorithms of fast Fourier transforms. During the transformation,
Tukey's(s) interim data taper window was applied to eliminate leakage
from the peaks. The Fourier line spectra for stations U (reference station)
and A} are shown in Fig. 2. The contribution from the meteorological
disturbances, located in the frequency range below 0.04 per hour, and the
higher harmonic components induced by the diurnal-semidiurnal components ;

4

Y Ao

sy

can be noted in the graphs.

Frequency response analyses and cross-spectral computations were
then carried out between the reference station U and the 21 stations ;
located at the model open boundary. The graphic results from a typical
analysis are shown in Fig. 3. 1In the top row the adjusted bottom pressures
at station A are shown. The computed spectra at station A are also shown.
It will be noted that the higher harmonics of the lunar component, which
are the quarter-diurnal tide (M, at f = .16 hr‘l) and the sixth-diurnal
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tide (Mg at £ = .24 hr'l), contain much less energy than the semi-diurnal
tide at f = .08 hr~l. This can also be found in the cross-spectrum
between the reference station U and A} in the first graph in the second
row of Fig. 3. The amplitude of the frequency response estimate between
U and A shown in the middle graph, indicates that the amplification
factor is 1.36 for the diurnal tide (f = 0.04), but only 0.3 for the
semi-diurnal tide (f = 0.08). The phase of the response function is shown
in the third graph of the second row in fractions of a circle. The phase
is also shown in the bottom row as the lag in seconds. The computed
square coherency and the spectrum of the uncorrelated components are
shown in the bottom row.

The spatial distribution of the amplitude and phase of the frequency
response function and the spatial distribution of the coherency of the
records for the semidiurnal component from the reference station U and
the boundary stations are shown in Fig. 4. The decrease in amplification
near station Aj; indicates the passing of the amphidromic point located
approximately halfway between the English and Dutch coasts (see Proudman
and Doodson, Fig. 5, Ref. 9). The amplitude, phase, and squared coherency
of the computed frequency response function for the quarter-diurnal harmonic
(f = 0.16/hr) along the boundary network are shown in Fig. 6.

Frequency response function for points between gauges can be
interpolated for models of different grid size. The impulse response
function h(k) between the reference station U and the boundary stations
is obtained by inverse Fourier transform from the co-, quad-, and auto-
spectra of the reference station.

e 5 _Ai‘ m [T — ] Ill(l
h(k) = 3 (:é“b Coy (/P (h) | cos =
= [ = hkn |
+ hz;)o [Qxy(h)/Pxx(h)] sin ) (22)
f6r k& muQL ]2 A e
h=0, ... m

The water levels at these boundary points for any future condition
can then be generated optimally from the measured information at station U
(or from any other single station) by the convolution formula:

R I A
y(nat) = ot ), x(kit) h(ndt - kat) (23)
k=0

RECONSTRUCTION OF BOUNDARY INFORMATION

The aforementioned approach was used for reconstructing the open
boundary information of a two-dimensional mathematical model of Jamaica
Bay, New York City, U.S.A., as shown in Fig. 7.(2) During a large-scale
field observation of water quality for comparing simulated with observed
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pollutant distribution after a rainstorm, the tide gauge in the bay at
Canarsie (northwestern corner of Fig. 7) malfunctioned without being
detected until after the entire field operation was completed. It was
found that the gauge became inoperative just before the sampling started
with a few days of usable data prior to that period. Without tide
information, no meaningful simulation could be made. Rather than request
another survey, it was decided to reconstruct the missing water level time
history. The nearest available tide data covering the entire period was
the East Rockaway gauge located on Long Island (southeast corner of map).
The only way for making the simulation is to derive the response (transfer)
function from East Rockaway to Canarsie with the mutually available data
before the experiment. Secondly, response function can be derived between
Canarsie and Rockaway (open boundary) with data collected in October 1970
with high accuracy. Once these response functions are determined, the
time history of the water levels at the open boundary can be reconstructed
(either in the frequency domain by transformation or in the time domain by
convolution) for the water quality simulation period.

Figures 8a, 8b, and 8c are the computed frequency response functions
between Canarsie and East Rockaway using the group of data just prior to
May 31, 1972. Figures 8d, 8e, and 8f are the response functions between
Rockaway and Canarsie using October 1970 data (dotted lines). The solid
lines in this set of graphs are results derived from another numerical
simulation of tidal flows between these two stations. Figure 8g is the
reconstructed water level (by transformation) at the model boundary
using data observed from May 31 through June 3, 1972, at East Rockaway.

With the boundary information determined, the water quality simulation
can then be carried out. A typical constituent distribution map is shown
in Fig. 9. Detailed discussion of this particular simulation can be
found in Leendertse and Liu. (2

SUMMARY

The usefulness of the network response function in numerical simulation
is threefold: (1) future conditions can be simulated using observed water
levels at any single location; (2) boundary information for models of
different grid size can be obtained by spatial interpolation along the
boundary line; and (3) missing data at any location can be estimated
optimally (in a least square error sense) using data at neighboring station
and the network response functions. The uses of response function and
cross-spectral density function to make numerical or hydraulic model
adjustment are discussed elsewhere.(2,3)
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Fiqure 9 A typical constituent distribution map of water quality simulation
as generated by the Integrated Graphic System (IGS) developed at
Rand
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